A characterization of b-chromatic and partial Grundy numbers by induced subgraphs
نویسندگان
چکیده
Gyárfás et al. and Zaker have proven that the Grundy number of a graph G satisfies Γ(G) ≥ t if and only if G contains an induced subgraph called a t-atom. The family of t-atoms has bounded order and contains a finite number of graphs. In this article, we introduce equivalents of tatoms for b-coloring and partial Grundy coloring. This concept is used to prove that determining if φ(G) ≥ t and ∂Γ(G) ≥ t (under conditions for the b-coloring), for a graph G, is in XP with parameter t. We illustrate the utility of the concept of t-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 7.
منابع مشابه
Asymmetric Coloring Games on Incomparability Graphs
Consider the following game on a graph G: Alice and Bob take turns coloring the vertices of G properly from a fixed set of colors; Alice wins when the entire graph has been colored, while Bob wins when some uncolored vertices have been left. The game chromatic number of G is the minimum number of colors that allows Alice to win the game. The game Grundy number of G is defined similarly except t...
متن کاملOn characterizing game-perfect graphs by forbidden induced subgraphs
A graph G is called g-perfect if, for any induced subgraph H of G, the game chromatic number of H equals the clique number of H. A graph G is called g-col-perfect if, for any induced subgraph H of G, the game coloring number of H equals the clique number of H. In this paper we characterize the classes of g-perfect resp. g-col-perfect graphs by a set of forbidden induced subgraphs. Moreover, we ...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملA note on generalized chromatic number and generalized girth
Erdős proved that there are graphs with arbitrarily large girth and chromatic number. We study the extension of this for generalized chromatic numbers. Generalized graph coloring describes the partitioning of the vertices into classes whose induced subgraphs satisfy particular constraints. When P is a family of graphs, the P chromatic number of a graph G, written χP, is the minimum size of a pa...
متن کاملPartial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs
A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016